Research on Pulsed Jet Flow Control without External Energy in a Blade Cascade
نویسندگان
چکیده
To control the flow separation in the compressors, a novel pulsed jet concept without external energy injection is proposed. The new concept designs a slot in the middle of the blade and sets a micro device to switch the slot periodically. Such a structure is expected to generate a pulsed jet by the pressure difference between the pressure side and the suction side of the blade. In order to analyze the interaction between the pulsed jet and unsteady separated flow, our numerical and experimental study is based on a specific cascade (with a flow separation inside) and a pulsed jet (one of the unsteady flow control method). The experimental and numerical results both show that when the frequency of pulsed jet is approximate to that of the separation vortex, then the control tends to be more effective. Based on the numerical simulations, the proper orthogonal decomposition (POD) is then used to reveal the control mechanism, extracting the different time-space structures from the original field. The results with the aid of POD show that the pulsed jet can redistribute the kinetic energy of each mode, and strengthen or weaken certain modes, particularly, while the steady jet reduces the kinetic energy of high-order modes in whole. Also, pulsed jet with proper parameters can transfer the energy from higher modes to the first flow mode (averaged flow), which is due to the conversion of the spatial vortical structures and the time evolution of the modes.
منابع مشابه
Simulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade
In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...
متن کاملIntegrated Flow Control Devices for the Design of Enhanced Low Pressure Turbines
Flow separation limits the efficiency of low-pressure turbines (LPTs) in aircraft engines. Experiments with vortex generator jets (VGJs), conducted in AFRL's low-speed cascade at Wright-Patterson AFB, have demonstrated dramatic reductions in separation losses. The critical science that will enable this design innovation to reach its potential is a comprehensive understanding of the effect of VG...
متن کاملAIAA 2000-2233 Control of Tip Clearance Flows in Axial Compressors
A compressor tip clearance flow control scheme is explored using fluidic actuators, the so-called " synthetic jets " , on the casing wall acting over the clearance region. The analysis of flow visualization images show the largest increase in mixing level when forced at the optimal frequency. A reduction in the tip clearance-related blockage is demonstrated using an array of synthetic jet actua...
متن کاملAssessment of various rotor tip geometries on a single stage gas turbine performance
Tip leakage loss introduces major part of losses of the rotor in axial gas turbines. Therefore, the rotor blade tip has a considerable effect on rotor efficiency. To understand the flow physics of the rotor tip leakage, we solve the flow field for different tip platforms (passive flow control) and by considering coolant tip injection (active flow control). Various blade tip configurations s...
متن کاملA Numerical Investigation on the Unstable Flow in a Single Stage of an Axial Compressor
An unsteady two-dimensional finite-volume solver was developed based on Van Leer’s flux splitting algorithm in conjunction with “Monotonic Upstream Scheme for Conservation Laws (MUSCL)” limiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the e...
متن کامل